If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+456=0
a = -3; b = 0; c = +456;
Δ = b2-4ac
Δ = 02-4·(-3)·456
Δ = 5472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5472}=\sqrt{144*38}=\sqrt{144}*\sqrt{38}=12\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{38}}{2*-3}=\frac{0-12\sqrt{38}}{-6} =-\frac{12\sqrt{38}}{-6} =-\frac{2\sqrt{38}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{38}}{2*-3}=\frac{0+12\sqrt{38}}{-6} =\frac{12\sqrt{38}}{-6} =\frac{2\sqrt{38}}{-1} $
| 9w+6=6w | | -10+j=6j+10 | | 3x+1(x-7)=1 | | 3b+1-6b=-4b-4 | | -4(7+2p)+4(6-p)=-12p-4 | | 2+7x=x-46 | | 3n+7n-12=2n-4 | | 2.5-3x=5.5 | | -3p+8=-5p | | 8^2-2x=15 | | 90-(5x+15)=46=59 | | 6(n+4)=4n+100 | | 5^2+11x+2=0 | | 4x-44=56 | | 15+x/7=-3 | | 122/j=11 | | 5n-30=2n+45 | | 24-3x=5.5 | | -7=d-13 | | X2+3X=-5X2-4x | | y=1−(−6)=7 | | ⅖y=–2 | | 2x-5=6x+14 | | 1e+2=6 | | 36/x=x/15 | | 12j−–3j=15 | | -5(x+)=-5x+9 | | -2.5+x=-1.3+-1.1 | | 0.2m^-0.04m=0.03 | | 8x-3x+2=5x+1 | | 8x-3x+2=5x+0 | | 0.9+19.2=0.06(8-0.6)x=0.468x |